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Speech and music are two of the most Explainable Variance Prediction correlation flat maps for three acoustic features
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acoustic features in speech and music are G
represented and processed in the human
brain. A few previous studies have examined
the representation of music in the human
brain ' 2L BLEB However, these studies used
cross-subject averaging or they merely
probed music-speech contrasts. Thus, they
were not sensitive enough to reveal details of
tuning in individual human brains.
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Here we asked whether acoustic features
drawn from music information retrieval
(MIR) can be used to better understand how
speech and music are represented in the
human brain. We also evaluated other
acoustic features used in prior studies.!"! One

human subject listened to broad speech and o .
music stimuli while brain activity was Average Prediction Correlation Value Per Feature

measured using fMRI. Auditory features were (as a fraction out of the full model's average prediction correlation value)

extracted from the stimuli and a voxel-wise
encoding model approach was used to
estimate how each location in the cerebral
cortex responded to these features. Our
approach estimates a separate model for
every voxel 1in every individual without loss
of information due to averaging across voxels
or subjects. Encoding models were verified
by assessing prediction accuracy on a . Tonad Koy Chroma Mode i P Tompont RMS P
separate held-out data set (the validation set).
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