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Neural Network: Back-propagation Derivation

Before implementing the neural network it was necessary to calculate the gradient for two loss functions: mean
square and cross-entropy.

Mean Square
Can rewrite the mean square cost function in matrix notation as
1 1
S = Z(2)|3 = 5(YTY —2Y?Z(2) + Z'(2)Z(2)) = J
In order to perform gradient descent we need to calculate 7Jw and 7Jy. Starting with 7Jy, we take the

derivative of the above expanded expression and we get that

1 YA Y4 07
Vidw = 5(=2Y.x S +22(a).x 50) = (Z(@) = Y).x 5

2 ow
Next we compute (Z(z) = sig(Wh)):
oz OWh

From matrix calculus we know that the derivative of Wh with respect to W is a 10 x 201 (num output by num
hidden units) matrix, where each row is h”. T will call this matrix hT. Thus (note Z(x) = sig(Wh)):

VIw = (Z(z) = Y). % sig (Wh). % OWh = (sig(Wh) = Y). xsig(Wh). x (1 — sig(Wh)). * KT

ow

(using notation introduced previously). Alternatively we can write this row-wise, such that
VIw, = (sig(W;h) = Y;) * sig(W;h) % (1 — sig(W;h)). % h

(Note that .x denotes element-wise multiplication of the vectors.)
Next we need to calculate the gradient for 7Jy .
The first part is similar to before:

1 07 0z 0z
=—(2Y.x —+2Z(x).x—)=(Z(x) = Y).x —
Vv = 5(=2¥. % o+ 27(2). 50 = (Z(@) ~ V). o
Furthermore,
0Z ., OWh
v =W (Wh). * A
The second partial derivative is computed as such
OWh oh
v Vv



Next,

oh p ovx p .
v tanh'(VX). % v = tanh'(VX). x X

where similar to before X7 denotes a 200 x 11 matrix (num hidden units by num inputs), where each row is
XT. Thus overall, \7.Jy can be written in matrix notation as (where .x denotes element-wise multiplication):

(((Z(x) = Y). % sigOWh). x (1 — sigWh))TW)T. %1 — tanh®>(VX). « XT
This can more clearly be written in row-wise notation

Vv, = D _(Z(x); = Y;) x sig(Wih) (1 = sig(Wih)) = Wij] % (1 — tanh®(V;X)). » X

i

Cross-entropy

Calculating cross entropy will yield the same exact expressions as above, except we need to use the appropriate
derivative of the cost function

Nout

J == [YVilnZk(z) + (1 = i) In(1 - Zy(x))]
k=1

Taking the derivative of this cost function with respect to W;, with respect to a row of W, is (assume we are
only working with one sample):
Y; 1-Y; 07

“Z@ oz W

We already know what % is from the previous gradient calculation. Thus, taking this derivative and swapping
it with the previous cost function’s derivative in the row-wise expression from above
Yi 1-Y;
+
Zi(x)  1-Zi(x)

VIw, = (— ) x sig(W;h) * (1 — sig(W;h)). x h

where .x refers to element-wise multiplication.
Similarly for taking the derivative with respect to Vj, with respect to a row of V:

Y, 1-Y, . 0z
2oz T nw

K3
K2

We know % from calculating the gradient earlier (for mean square cost function). thus substituting the new
J

loss function in place of the old loss function, we get (in row-wise notation)
T, = (Do N g (Wil + (1 = sig(Wih) = Wi+ (1 — tanh®(V; X)), X
J Zi(z)  1-Z(x) ! !

%

Now that the stochastic gradient update has been calculated a neural network can be implemented.



Implementing the neural network

See appendix for all python implementation.

A neural network with 10 input nodes, 1 hidden layer with 200 nodes, and an output layer with 10 nodes was
implemented. A bias of 1 was added to both the input and hidden layer. Two cost functions were implemented,
mean square error and cross-entropy, as defined in the homework specifications. All weights were randomly
initialized from a Gaussian distribution. Momentum was implemented, learning rate decreased every epoch
during training based on a function of the number of iterations, and all data was preprocessed. All networks
were trained using stochastic gradient descent. See the implementation details below for specific parameter
values.

Mean Squared Error Cost Implementation

I trained a neural network using a mean-squared error cost function. My initial learning rate was set to
0.1 and decreased every epoch as a function of the number of iterations
LR(0)

Where t corresponds to the number of times the weights have been updated and | X| corresponds to the number
of samples we are training on. « was a parameter available for tuning. I ended up just using a = 1 to make
the learning rate reassignment related to length of the epoch (thus the learning rate changes according to the
number of epochs that have happened, in addition to the number of times the weights have been updated). The
following annealing method was based off of a method described in an online source [1]. If the learning rate was
initialized any larger, then algorithm ended up getting stuck in a local minima and performining poorly. Slower
learning rates normally resulted in a long training period.

The neural network weights were initialized by random assignment from a normal distribution with
zero mean and a standard deviation of 0.01. This assignment was chosen based off of recommendations
on piazza. I also implemented momentum as seen in class:

Algorithm 1 momentum

S Aw = —eyw

while training do
w=w+ Aw
Aw = —ey w+ SBAw

oW

I used a 8 hyper-parameter value of 0.01. Using higher values of beta (i.e, 0.1 and 0.5) often would make
the training period take a long time, whereas using smaller 8 values (i.e, 0, or no momentum) would result in
the algorithm getting stuck in local minima.

I computed training error and the total cost of the current set of weights every 1000 updates. The following
figures represent the training error and total cost of the current set of weights respectively:

Final training accuracy was 2.1%, implying that the network was actually starting to overfit.

Before training the neural networks, I preprocessed the training data and normalized it to have a mean of 0 and a
standard deviation of 0.5 (to speed up the training process). I normalized the validation data using the training
data’s mean and standard deviation, such that the validation data would be shifted the same way as the training
data. (I empirically compared normalizing the validation data with its own mean and standard deviation against
normalizing it with the training data’s mean and standard deviation, the validation accuracy of the former was
5.04% error, whereas the latter had 4.2% error, suggesting marginal improvement of performance.)

Training took approximately 15 minutes (4 epochs). Validation accuracy after full training as 4.2%
error. There were 50,000 training images and 10,000 validation images.

I determined when to stop training based off of the cost of the current set of weights, which
was computer every 1000 updates and printed out. The amount of improvement in cost became
non-significant after 4 epochs, which is when I chose to terminate the training (you can see in
the figure plotting cost vs. training iteration that the curve effectively flat lines after a while and
the change is minimal).
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Figure 1: Iteration vs cost of current weights
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Figure 2: Iteration vs. training error

Cross entropy cost implementation

I trained a neural network using a cross-entropy error cost function. My initial learning rate was set to
0.025 and decreased every epoch as a function of the number of iterations (same as for mean-squared)

LR(t) = 2RO
1+ x|

Similar to mean-squared error, I set « = 1. The initial learning rate for cross entropy significantly impacted

the performance of the neural network. If the step size was initially too large, overall cost after each updated

fluctuated too much and didn’t decrease as much as it could (i.e. it was getting stuck in local minima and

performing poorly).

The neural network weights were initialized by random assignment from a normal distribution with

zero mean and a standard deviation of 0.01. This assignment was chosen based off of recommendations

on piazza. I also implemented momentum and used a 5 hyper-parameter value of 0.01, similar to the

mean-squared error case for similar reasons.

I computed training error and the total cost of the current set of weights every 1000 updates. The following

figures represent the training error and total cost of the current set of weights respectively:

Final training accuracy was 1.5%, implying that the network was actually starting to overfit.

Before training the neural networks, I preprocessed the training data to be binarized: if a particular pixel value

was non-zero, set the feature value to be 1, else set it to 0. I preprocessed all training and test data similarly.

Training took approximately 16 minutes (a little over 4 epochs). Validation accuracy after full



3[0000 Cost prer 1000 |telrat|0n5

300000 |
250000 |

200000

Cost

150000 |

100000

20000 M

0 L ! I T
o 50000 100000 150000 200000 250000
Iteration

Figure 3: Iteration vs cost of current weights
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Figure 4: Iteration vs. training error

training as 3.81% error. There were 50,000 training images and 10,000 validation images.

I determined when to stop training based off of the cost of the current set of weights, which
was computer every 1000 updates and printed out. The amount of improvement in cost became
non-significant after approximately 4 epochs, which is when I chose to terminate the training
(you can see in the figure plotting cost vs. training iteration that the curve effectively flat lines
after a while and the change is minimal).

Which was better?

I spent more time tuning the parameter values for cross-entropy, it was initially underperforming mean-squared
error. However, once I found the right set of parameters, cross-entropy performed marginally better, as it should
because this is a classification problem, not a regression problem. When plotting the training error and the cost
every 1000 iterations, it looked like cross entropy fluctuated a lot more than mean squared error, even though
it also yielded a similar learning curve. Cross entropy took slightly less time to train as compared to mean
squared error (when training on the full 60,000 images; they took about the same time for the 50,000 images
when doing the validation testing).

My best kaggle score for using mean-squared error was 0.96400 using a training set of 60,000 images and
the same parameters and preprocessing methods mentioned above in the mean-squared error section.

My best kaggle score for using cross-entropy cost functions was 0.96460, only marginally better. The
neural network was trained on 60,000 images using the same parameters as mentioned above under the cross
entropy section. The training data was preprocessing using the same binarization method mentioned above.



Appendix

See all python implementation here.
The following is the neural network implementation.

class NeuralNetwork ():
def init__(self, inputSize, outputSize, numHiddenUnits=200):

self .numInput = inputSize
self .numHiddenUnits = numHiddenUnits
self .numOutput = outputSize

def benchmarck(self, predY):
return np.sum(np.argmax(self.Y, axis=0) != predY)

def sigmoid(self, x):
try:
tmp = 1 / (1 + np.exp(-x))
# addressing overflow errors
except OverflowError:
print ’overflow’

if x > 0:
tmp = 1

elif x < O:
tmp = 0

return tmp

def sigmoidPrime (self, x):
tmp = self.sigmoid(x) * (1 - self.sigmoid(x))
return tmp

def tanh(self, x):
return np.tanh(x)

def tanhPrime(self, x):
return 1 - self.tanh(x)x**2

def meansquareCost (self, X=None, Y=None):
# calculate cost for full X
if X is None and Y is None:
predY = self.forward()
return 0.5 * np.sum(LA.norm(predY-self.Y, ord=2, axis=0)x*%*2)
# calculate cost for 1 sample
else:
predY = self.forward (X=X, train=False)
return 0.5 * np.dot ((predY-Y).T, predY-Y)

def meansquaredPrime (self, X=None, Y=None):
if X is None and Y is None:
X, Y = self.X, self.Y
predY = self.forward (X=X, train=False)
return (predY-Y)

def crentropyCost(self, X=None, Y=None):

# calculate cost for full X

if X is None and Y is None:
predY = self.forward()
predY = self.entropyOffset (predY)
return - np.sum(np.sum(self.Y * np.log(predY) +
(1 - self.Y) * np.log(l-predY), axis=0))

# calculate cost for 1 sample



def

def

def

def

def

def

else:
predY = self.forward(X=X, train=False)
predY = self.entropyOffset (predY)
return - np.sum(Y * np.log(predY) + (1 - Y) * np.log(l-predY))

crentropyPrime (self, X=None, Y=None):
if X is None and Y is None:

X, Y = self.X, self.Y
predY = self.forward (X=X, train=False)
predY self.entropyOffset (predY)
return - (Y/predY) + (1-Y)/(l-predY)

entropyOffset (self, Y):
Y[Y==0] += 0.0000000001
Y[Y==1] -= 0.0000000001
return Y

callCost (self, X=None, Y=None, costFunc=’meansq’, prime=False):
if prime:
if costFunc == ’meansq’:
cost = self.meansquaredPrime (X=X, Y=Y)
elif costFunc == ’crentropy’:
cost = self.crentropyPrime (X=X, Y=Y)
else:
if costFunc == ’meansq’:
cost = self.meansquareCost (X=X, Y=Y)
elif costFunc == ’crentropy’:

cost = self.crentropyCost (X=X, Y=Y)
return cost

callActivation(self, X, activation, prime=False):
if prime:
if activation == ’tanh’:
out = self.tanhPrime (X)
elif activation == ’sig’:
out = self.sigmoidPrime (X)
else:
if activation == ’tanh’:
out = self.tanh(X)
elif activation == ’sig’:

out = self.sigmoid (X)
return out

saveWeights (self, costFunc=’meansq’):

print ’Iteration {0}. Saving weights...’.format(self.numIter)
pickle.dump ((self.V, self.W),
open(’weights_{0}iter.pkl’.format(self.numIter), ’wb’), protocol=-1)

numericalGradient (self, samp, label, costFunc=’meansq’, eps=0.1):
original = self.V[10,10]

self .V[10,10] += eps
leftCost = self.callCost(X=samp, Y=label, costFunc=costFunc)

self.V[10,10] = original - eps
rightCost = self.callCost(X=samp, Y=label, costFunc=costFunc)

self .V[10, 10] = original
return (leftCost-rightCost)/(2*eps)



def assignlLearningRate(self, factor=1):
self.learnRate = self.startLR/(1+self.numIter/(factor*self.X.shapel[1]))

def forward(self, X=None, train=True, returnlntermediate=False):
X = self.X if train else X

VX = np.dot(self.V, X)
h = self.callActivation(VX, self.hiddenact)
if self.bias:
h = np.vstack((h, np.ones((1, h.shape[1])))) # add bias if necessary
Wh = np.dot(self.W, h)
Z = self.callActivation(Wh, self.outact)

# return intermediate products and activations as well
if returnIntermediate:
return VX, h, Wh, Z
# return just final output
return 7

def backwardProp(self, X=None, Y=None, cost=’meansq’):
if X is None and Y is None:
X, Y = self.X, self.Y
# self . X, self.Y = X, Y

dL = self.callCost (X=X, Y=Y, costFunc=cost, prime=True)

VX, h, Wh, Z = self.forward(X=X, train=False, returnIntermediate=True)
dZ = self.callActivation(Wh, self.outact, prime=True)

dLdZ = dL * dZ

# calculate gradJ_w
dJ_w = dLdZ * np.tile(h.T, (self.W.shapel[0],1))

# backpropogation step

sum_dZ = np.dot(dLdZ.T, self.W).T

dH = self.callActivation(VX, self.hiddenact, prime=True)
dHsum_dZ = sum_dZ[:self.V.shape[0],:] * dH

# calculate gradJ_v
dJ_v = dHsum_dZ * np.tile(X.T, (self.V.shapel[0], 1))
return dJ_w, dJ_v

def train(self, images, labels, learnRate=0.1, costFunc=’meansq’,
bias=True, saveCost=1000, saveEvery=20000, hidact=’tanh’,
outact=’sig’, wtvar=0.1, beta=0.1, continueTrain=False):
if not continueTrain:
self .X, self.Y, self.bias, self.wtvar = images, labels, bias, wtvar
self .hiddenact, self.outact = hidact, outact
self.learnRate, self.startLR = learnRate, learnRate
self.costs, self.errrate = [], [] # to keep track of costs/error rate per iteration
self .numIter = 0 # initialize number of iterations for training purposes

addUnit = 0

if bias:
self .X = np.vstack((self.X, np.ones((1,self.X.shape[1]))))
addUnit = 1

self.V = np.random.randn(self.numHiddenUnits, self.numInput + addUnit)
* np.sqrt(wtvar) # input to hidden layer
self .W = np.random.randn(self.numOutput, self.numHiddenUnits + addUnit)

* np.sqrt(wtvar) # hidden to output layer



self.inds
# current sample we’re at,
self.currind,

try:

np.random.permutation(self.X.shape[1]) # shuffle the samples
current epoch we’re at
0, 1

self.currepoch

while True:

# save weights saveEvery iterations
if self.numIter % saveEvery 0:
self .saveWeights (costFunc=costFunc)

# calculate the gradients

samp self .X[:,self.inds[self.currind]]

label self .Y[:,self.inds[self.currind]]

gradW, gradV self.backwardProp (X=np.tile(samp,
Y=np.tile(label, (1,1)).T, cost=costFunc)

(1,1)).7T,

== 0:
.learnRate * gradV

.learnRate * gradW

if self.numlter
deltV self
deltW self

# update
self.W
self .V
deltW
deltV

self .W + deltW

self .V + deltV
self.learnRate * gradW + beta * deltW
self.learnRate * gradV + beta * deltV

# print out cost on each saveCost number of iterations
if self.numIter % 0:
cost self.callCost (costFunc=costFunc)
# estCost self .numericalGradient (np.tile(samp,
np.tile(label, (1,1)).T, costFunc=costFunc)
self.costs.append(cost)
self.errrate.append(self.benchmarck(self.predict (images)))

saveCost

(1,1)).T,

print ’Cost is {0}...’.format (cost)
# print ’Numerical gradient estimate for d4J/dV_3 is {0}
compare to {1}...’.format(estCost, np.mean(gradV[10,10]))

self .numIter += 1 # keep track of iterations
# update currind correctly
if self.currind == self.X.shape[1l] 1:
print ’Epoch {0} finished’.format(self.currepoch)
self.currind, self.currepoch = 0, self.currepoch + 1
self.assignlearningRate() # change the learning rate
else:
self.currind +=

1

except KeyboardInterrupt:

return
def predict(self, images):
testIms = images
if self.bias:
testIms = np.vstack((testIms, np.ones((1, testIms.shapel[1]))))
labels = self.forward(X=testIms, train=False)

return np.argmax (labels,

axis=0) # pick the label that is the highest value

The following is the preprocessing methods.

def normalize (X,

scalefactor=1):



Xmean = np.mean(X, axis=1)

Xhat = X - matlib.repmat(np.tile(Xmean, (1,1)).T, 1, X.shapel[1])

Xstd np.std(Xhat, axis=1)

Xhat = (Xhat / matlib.repmat(np.tile(Xstd, (1,1)).T, 1, X.shapel[1])) * scalefactor
return np.nan_to_num(Xhat), Xmean, Xstd

def binarize (X):
return (X > 0) * 1

The following is the script used to train the mean-squared error neural network. All other networks were trained
using similar scripts but with the parameters adjusted according to the values presented in the sections above.

inputsize = Xtrain_norm.shape [0]

outputsize = Ytrain.shape [0]

costFunc = ’meansq’

learnRate = 0.1 # gradient descent learning rate

wtvar = 0.01**x2 # for initializing the weights, STD of 0.01
beta = 0.01 # momentum velocity factor

saveCost = 1000 # how often to save cost

saveEvery = 30000 # how often to save weights
nn = NeuralNetwork.NeuralNetwork (inputsize, outputsize)
start_time = time.time ()

nn.train(Xtrain_norm, Ytrain, costFunc=costFunc, learnRate=learnRate, wtvar=wtvar, beta=beta,
saveCost=saveCost, saveEvery=saveEvery)

end_time = time.time ()
print ’Training time was {0} seconds....’.format(end_time - start_time)

plt.figure ()

plt.plot (1000*np.arange(len(nn.costs)), nn.costs)
plt.title(’Cost per 1000 iterations’)

plt.xlabel (’Iteration’)

plt.ylabel (’Cost’)

plt.show ()

plt.figure ()

plt.plot (1000*np.arange (len(nn.errrate)), [elem/Xtrain_norm.shape[1] for elem in nn.errrate])
plt.title(’Training error per 1000 iterations’)

plt.xlabel(’Iteration’)

plt.ylabel (’Error’)

plt.show ()

# final training error
print nn.errrate[-1]/50000

Yvalidpred = nn.predict(Xvalid_norm)

# to calculate validation error
wrong = np.sum(np.argmax(Yvalid, axis=0) != Yvalidpred)
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