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1 Purpose

From the lab: ”Design a controller that starts with the pendulum in the down position and then swings it into
and maintains it in the up position.”
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✓̇ẍ cos(✓)

d. At the natural frequency ! =
p

g

l

we have: H = 1

clp

p
g
l j+1

. The magnitude of the phase of this is
���arctan(c

lp

p
g

l

)
��  5 which will yield that

q
l

g

tan(5) � c
lp

. l = L
p

= 0.3302m, g = 9.8m/s

Thus, c
lp

= 0.01606

e. For full simulink model, please see the lab section.
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3 Lab

a. Simulink diagrams See Appendix

b. Self-erecting Pendulum
We initially implemented a linear system for keeping the pendulum inverted using state-feedback with a
gain matrix defined as K = [�13.0323 � 14.7880 � 48.1644 � 6.6228] and a luenberger controller, with
a L matrix defined as:

L =

2

664

16.1595 �2.3767
254.9780 �5.4829
15.7136 21.0282
180.7734 378.2117

3

775

This system would kick in once our pendulum was over a threshold of 10 degrees within vertical (0 degrees).
Until then, an energy pumping ’bang bang’ controller was used to lift the pendulum within the required
threshold.
Figure 4, shows the entire connection of our controller. The subsystem IPhardware (figure 5) corresponds
to our interface with the cart system. Here we read values from the encoder and converted them to
relevant units of position and angle. The position conversion was a multiplication with 1

43958 and the
angle conversion was a multiplication with �1

859.1 . Because the observer is not active when the swing up
controller is active, there is no estimate of velocity and angular velocity, and thus these values must be
calculated from the encoder readings (see figure 5), using a di↵erentiator multiplied by a low pass filter
(c

lp

= 0.0160593). The angle reading must also be converted to make sense in the context of our energy
pumping system, using the custom MATLAB function block (listing 1):

1 function theta = angleMod ( theta encode )
2 %#codegen

3 theta = mod( theta encode , 2⇤pi ) � pi ;
4

5 end

Listing 1: angleMod()

The saturation block before the analog write block is a custom saturation block defined as such (listing
1):

1 function V sat = fcn ( xdot , V)
2 % Se t t i n g the bounds

3 max lim = min(8 ,max(4 ,10⇤ xdot +5)) ;
4 min lim = min(�4 ,max(�8 ,10⇤xdot �5)) ;
5 %Dynamic Sa tura t ion

6 V sat = max( min lim ,V) ;
7 V sat = min(max lim , V sat ) ;
8 end

Listing 2: saturation function

The next subsystem of interest is the mode selector (figure 6). The mode selector serves to pick whether to
use the swing-up controller or the linear observer controller. This is done by looking at the angle position
reading and comparing it to our threshold.

Figure 7 depicts our linear control system, with the gain (K) and L values as stated above. Our state
space representation of the plant model had the following A, B, C, and D matrices:

A =

2

664

0 1.0000 0 0
0 �6.8123 �1.4968 0
0 0 0 1.0000
0 15.4731 25.6749 0

3

775
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B =

2

664

0
1.5226

0
�3.4583

3

775

C =


1 0 0 0
0 0 1 0

�

D = 0

Figure 8 shows the bang bang controller which outputs V
max

= +6V when the energy of the system is less
than zero (i.e. not inverted) and when ✓̇cos(✓) < 0, �V

max

= �6V when the energy of the system is less
than zero and ✓̇cos(✓) > 0, and 0 when the energy of the system is greater than or equal to 0 (achieved
vertical state). We used a Kpump gain of 50. The SAT block (equal to 0.5) seen in figure 4 was used to
set the initial direction of the cart before the bang bang controller kicked into e↵ect (50 ms).

Lastly note the delay block that is highlighted in blue in figure 1. This is used to delay the output of the
linear controller to the system until the observer has had enough time to converge to the actual values.
We used a delay of 0.25 s. (The reference used was [0 0 0 0]. Everything else was kept the same.

3.1 Improving the controller

In order to improve performance with rebalancing the pendulum after it was knocked down, a LQR controller
was implemented, with the following Q (state cost) and R matrices (controller action cost):

Q =

2

664

80.0000 0 0 0
0 0 0 0
0 0 400.0000 0
0 0 0 0

3

775

R = 0.0194

The resulting K and L matrices were:

K =
⇥
�64.1427 �56.7426 �214.7453 �33.5827

⇤

L =

2

664

41.6039 0.6927
541.4581 15.8748
16.2986 51.5838
760.8475 976.5979

3

775

These values were chosen such that the system would try to prioritize balancing the pendulum (q3 a↵ects angle)
then the position (q1) while keeping the input voltage to a minimum (low r). The SAT value was also changed
to be 0.01 and Kpump gain was changed to 80. Everything else was kept the same as before. The updated
controller did a better job with rebalancing the pendulum after it was knocked down.

3.2 Possible future improvements

The system seemed to fail to rebalance if the energy of the system started changing a lot (which would happen
sometimes when the pendulum would be knocked down, see LQR energy plot below, and the behavior of the
energy values at the end of the time period). Additional kinetic energy seems to make it di�cult for the switch
between swing-up and linear controller to happen successfully. Currently we are not sure of how best to address
this issue. Lastly, a modified swing up controller might be necessary, such that it takes better account of the
position of the cart on the track with respect to the reference.
The linear system also seemed to have a small steady state error, which might be worth trying to address
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by increasing the system type (maybe by adding an integral before the gain matrix). This way the cart will
consistently come back to center, thus making it less likely to crash into the walls of the track if it needs to
rebalance the pendulum. Also the observer poles need to be moved further to the left (to be 5x away from the
system poles).

3.3 Video of self inverting pendulum

To view the final pendulum in action: https://youtu.be/W3v7OwX6yGE.

4 Appendix

Simulink Models

Figure 1: Full simulink model of entire system
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Figure 2: Simulink model of input (output) to (from) hardware

Figure 3: Simulink model of mode selector (swingup controller or linear controller selection)
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Figure 4: Simulink model of linear controller

Figure 5: Simulink model of swingup, ’bang bang’ controller
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Figure 6: Graph of energy response for pendulum and cart while balancing

Figure 7: Graph of position and angle response for pendulum and cart while balancing, with angle thresholds
for reference

Figure 8: Position and position estimate for the system
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Figure 9: Angle and angle estimate for the system

Figure 10: Velocity and velocity estimate for the system

Figure 11: Angular velocity and angular velocity estimate for the system

The following script was used when running the simulations and calculating step response information in the
prelab.

1 %% Lab 6D

2 clc

3 close a l l

4 clear a l l
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Figure 12: Graph of control input for pendulum and cart while balancing

Figure 13: Graph of velocity of cart and angular velocity of the pendulum while balancing

Figure 14: Graph of energy of pendulum and cart with perturbations

5

6 s t a r t t ime = 0.25
7 Kpump = 50 ;
8 SAT = 0 . 5 ;
9 c lp = 0 .0160593 ;

10 thresh = (10⇤pi ) /180 ;
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Figure 15: Graph of angle of pendulum and position of the cart with perturbations, with angle thresholds for
reference

Figure 16: Graph of control input for pendulum and cart with perturbations

Figure 17: Graph of velocity of cart and angular velocity of pendulum with perturbations

11 r e f = [ 0 ; 0 ; 0 ; 0 ] ;
12 M = 0 . 9 4 ;
13 m = 0 . 2 3 0 ;
14 Lp = 0 . 3302 ;
15 I c = m⇤Lpˆ2/3 ;
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Figure 18: Position and Position estimate with lqr controller

Figure 19: Velocity and velocity estimate with lqr controller

Figure 20: Angle and angle estimate with lqr controller

16 I e = 4⇤m⇤Lpˆ2/3 ;
17 Kt = 7.67⇤10ˆ(�3) ;
18 Km = 7.67⇤10ˆ(�3) ;
19 r = 6 .36 ⇤ 10ˆ�3;
20 Rm = 2 . 6 ;
21 Kg = 3 . 7 1 ;
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Figure 21: Angular velocity and angular velocity estimate with lqr controller

Figure 22: Voltage input graph with lqr controller

Figure 23: Energy graph with lqr controller

22 Jm = 3.9 ⇤ 10ˆ�7;
23 g = 9 . 8 0 7 ;
24

25 den1 = (1/ r ˆ2)⇤Kgˆ2⇤Jm+M+(m/4 ) ;
26 den2 = (�4/(3⇤ r ˆ2)⇤Kgˆ2⇤Jm⇤Lp�(4/3)⇤Lp⇤(m+M)+m⇤Lp ) ;
27 a12 = 1 ;
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28 a34 = 1 ;
29 a22 = �(Km⇤Kgˆ2⇤Kt)/( r ˆ2⇤Rm⇤den1 ) ;
30 a23 = (�3⇤g⇤m)/(4⇤ den1 ) ;
31 a42 = �(Km⇤Kgˆ2⇤Kt)/( r ˆ2⇤Rm⇤den2 ) ;
32 a43 = (�(1/ r ˆ2)⇤Kgˆ2⇤Jm⇤g � (m+M)⇤ g )/ den2 ;
33 b2 = (Kg⇤Kt)/( r ⇤Rm⇤den1 ) ;
34 b4 = (Kg⇤Kt)/( r ⇤Rm⇤den2 ) ;
35

36 A = [0 a12 0 0 ; 0 a22 a23 0 ; 0 0 0 a34 ; 0 a42 a43 0 ] ;
37 B = [ 0 ; b2 ; 0 ; b4 ] ;
38 C = [1 0 0 0 ; 0 0 1 0 ] ;
39 D = 0 ;
40

41 system = ss (A, B, C, D) ;
42

43 K = place (A, B, [�2+10 j �2�10 j �1.6+1.3 j �1.6�1.3 j ] ) ;
44 L = transpose ( p lace ( t ranspose (A) , t ranspose (C) , . . .
45 [�10+15 j , �10�15j , �12+17j , �12�17 j ] ) ) ;
46

47 % LQR

48 sys = s s (A, B, C, D) ;
49 Q = diag ( [ 5 / 0 . 2 5ˆ2 , 0 , 1/0 .05ˆ2 , 0 ] ) ;
50 R = diag ( [ 0 . 7 / 6 ˆ 2 ] ) ;
51 [K, S , E ] = l q r ( sys , Q, R) ;
52 L = transpose ( p lace ( t ranspose (A) , t ranspose (C) , . . .
53 [�24+15 j , �24�15j , �26+17j , �26�17 j ] ) ) ;

Listing 3: lab6dcscript.m
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